

The Energy-Water Nexus

Moderated by:
Nicholas Cizek, PhD

Fellow, ARPA-E

Michael Hightower

Distinguished Member of Technical Staff, Sandia National Laboratories

Nikolay Voutchkov

President, Water Globe Consulting

Framing the Nexus

1. Water for Energy:

- How much US water consumption is for electricity and fuel production?
- Which processes are large consumers and why?
- What reductions are possible?

2. Energy for Water:

- How much US electricity and fuel consumption is for water processing?
- Which processes are large consumers and why?
- What reductions are possible?
- 3. What opportunities exist for ARPA-E-scale funding to significantly improve upon these processes?

U.S. Fresh Water Withdrawal Trends

U.S. Fresh Water Consumption

Total: 100 Bgal/day

[USGS, 1998]

Energy accounts for 27 percent of non-agricultural fresh water consumption

Growing Limitations on Fresh Surface and Ground Water Availability

(Based on USGS WSP-2250 1984 and Alley 2007)

 Many major ground water aquifers seeing reductions in water quality and yield

- Little increase in surface water storage capacity since 1980
- Concerns over climate impacts on surface water supplies

Water Consumption for Electricity

Plant Type	Cooling Process	Water Consumption (gal/MWh _e)
Fossil/ biomass steam turbine	Open-loop	~200-300
	Closed-loop	300-480
Natural Gas Combined- Cycle	Open-loop	100
	Closed-loop	180
	Dry	0
Concentrating Solar Thermal	Closed-loop	740-890
Carbon sequestration for fossil energy generation	~40-80% increase in water consumption	

Water Consumption for Fuel

Fuel Type	Water Consumption (gal/MMBTU)
Oil Refining	7-20
Natural Gas Extraction/processing	2-3
Grain Ethanol Processing	12-160
Corn Irrigation for Ethanol	2500-31600
Oil Sands	20-50

Alternative Transportation Fuel Water Use Impacts Will be Regional

Energy Development Produced Water Quality and Use Challenges and Options

Gas Shale Development

- ~3-5 Mgal consumed water per hydrofractured well
- Regional water limitations will occur

Oil and Gas Produced Water

Research and Development Priorities for the Electric Power Sector

Hybrid Wet-Dry Cooling

- Improve dry and hybrid cooling system performance and cost
- Improve ecological performance of intake structures for hydro, oncethrough, and ocean cooling
- Improve materials and cooling approaches compatible with use of degraded water
- Electric grid infrastructure upgrades to improve low water use distributed technology integration

Research and Development Priorities for Alternative Fuels Sector

- Reduce water use for cooling in biofuels and alternative fuels production
- Reduce water use in processing
- Develop low fresh water use technologies such as algal biodiesel, drought tolerant crops
- Assess non-traditional water use for fuels applications
- Assess hydrologic impacts of large cellulose biofuels scaleup, oil shale, oil sands, etc.

Nikolay Voutchkov, PE, BCEE Water Globe Consulting

Research Program Framework for Advanced Low-Energy Water Technologies

Where We Are and Where We Want to be in

Non-Traditional Water Production Technologies?			
Parameter	Today	Within 5 Years	Within 20 Years
Cost of Water (2010 US\$/kgal)	US\$2.0-3.0	US\$1.5-2.5	US\$1.0-1.5
Construction Cost (Million US\$/MGD)	4.5-8.0	4.0-6.5	2.0-3.5

Cost of Water (2010 US\$/kgal)	US\$2.0-3.0	US\$1.5-2.5	US\$1.0-1.5
Construction Cost	4.5-8.0	4.0-6.5	2.0-3.5

(2010 US\$/kgal)			
Construction Cost (Million US\$/MGD)	4.5-8.0	4.0-6.5	2.0-3.5
Power Use of SWRO System (kWh/kgal)	9.5-10.5	8.0-10.0	5.0-6.5

6,500-12,500

5-7

45-50

Membrane Productivity

Membrane Useful Life

(years)

(gallons/day/membrane)

Plant Recovery Ratio (%)

9,000-15,000

7-10

50-55

25,000-40,000

10-15

55-65

US Water Supply Sources

Sustainability of Water Supply Alternatives

Water Technology	Percent of Total Water Production Costs Contributed to	
	Energy	Chemicals
Conventional Water Treatment	15	70
Wastewater Treatment & Reclamation	30	60
Desalination	35	5

Innovative Technologies Should Focus on Disruptive Reduction of:

- Chemical Use for Conventional W & WW Treatment & Reclamation
 - Energy for Water Reclamation & Desalination

Water Reclamation & Desalination

- Focus Technologies that Disruptively Reduce Energy & Chemical Use for:
 - Salt and Contaminant Removal
 - Concentrate/Waste Management

Prime Target: Technologies That Use Low-Energy Non-Reverse Osmosis Separation

<u>&</u>

Advanced Biological Removal or <u>Destruction</u> of Impurities

Conventional Water & Wastewater Treatment & Reclamation

- Focus Technologies that Eliminate or Reduce Use of Chemicals for:
 - Source Water Coagulation & Oxidation
 - Disinfection
 - Product Water Conditioning Selective Addition or Removal of Constituents

Prime Target: Low-Energy Technologies That Generate Treatment Chemicals from Water /WW Constituents!

Focus Area 1-Advanced Technologies for:

- Bio-membrane & Enzymatic Water Treatment
- Osmotic Water Transport & Impurity Removal
- Micro-electromagnetic Water or Impurity Separation
- Hybrid Thermal/Membrane Water Transport
- Zero-Liquid Waste Discharge
- Near-Zero Chemical Use

Focus Area 2 Symbiotic Technologies for Harnessing of Energy and Chemicals Embedded in Water

- Harnessing Energy from Water i.e., Osmotic Power
- Harnessing Energy from Wastewater i.e., Energy from Organic Constituents
- ➤ GHG Sequestration i.e., Locking Carbon Dioxide, Nitrogen and Other Compounds in Water
- Harnessing Chemicals Embedded in Water for Water & Wastewater Treatment

Focus Area 3 Platform Technologies & Materials to Leverage Innovation

- Nano-Structured Membranes/Materials for:
 - Forward & Pressure Retarded Osmosis
 - Micro, Ultra & Nano-filtration
 - Wastewater Treatment, Water Production & Waste Minimization
- Advanced Membrane Bioreactor Technologies with Multifaceted Applications
 - Wastewater Treatment
 - Elimination of Chemical Use and Bio-fouling for Water Production

Key Criteria for How Valuable is Proposed Research Topic

- Disruptive Reduction of:
 - Energy;
 - Water Production Costs;
 - Carbon Footprint;

(over 20 % Reduction of Current Status-Quo)

- High-Impact Science Wide Range of Applications for:
 - Conventional and No-Traditional Water Source Treatment;
 - Water Reuse;
 - and Wastewater Treatment.

Questions?

Energy-Water Nexus Networking Session

Monday 8 pm (Belvedere, bar in the hotel lobby)

